
1

Using Models to Test
Process Assumptions

within the SEL Recommended Software
Development Approach

 Paolo Donzelli - Giuseppe Iazeolla

Laboratory for Computer Science
and CERTIA Research Center

University of Rome “Tor Vergata”
Roma, Italy

25th Annual Software Engineering Workshop November 29-30, 2000

University of Roma “Tor Vergata” (donzelli,iazeolla)@info.uniroma2.it

2

Outline

• Introduction

• Why process modelling, why a hybrid
approach, and the suggested approach

• Building a Process Model

• A model of the SEL recommended software
development approach

• Applying the Model

• To reproduce some possible software
development scenarios

3

Why Process Modelling

Dynamic Estimation

Capability

assess and analyse
what-if and off-line analysis

forecast and prototype

Key objectives of software companies:

• high quality products

• high performance processes

Process
Model

supports

provides

4

Why a Hybrid Approach

The software process is composed by various activities:

• some are sequential, others may be performed
concurrently

• activities exchange artifacts

• activities consume resources and may collide

To model a software process we have to deal with both
discrete system aspects (start/end of an activity,
reception/release of an artifact) and continuous system
aspects (resource consumption, percentage of developed
product).

5

A Hybrid Two-level Modelling Approach

dynamics estimation
capability

higher
abstraction

level

lower
abstraction

level

Process Model

discrete method

analytical method

continuous method

6

Modelling the SEL Software Process
requirements
requirements changes
requirements increments

Specification (SP)
Activity

High Level Design (HLD)
Activity

Low Level Design (LLD)
Activity

Implementation (IMP)
Activity

System Test (ST)
Activity

Acceptance Test
(AT) Activity

specification
SP changes
SP increments
SP corrections reports

high level design
HLD changes
HLD increments
HLD corrections reports

low level design
LLD changes
LLD increments
LLD corrections reports

code
code changes
code increments
code corrections reports

system-tested code
system-tested code changes
system-tested code increments
system-tested code corrections reports

high level design defects reports

low level design defects reports

code defects reports

specification defects reports

d

e
f
e

c
t
s

r

e
p
o

r
t
s

acceptance-tested code
acceptance-tested code changes
acceptance-tested code increments
(the final SW_product)

 SP HLD LLD IMP ST AT time

Process Phases over Time

P
ro

ce
ss

 A
ct

iv
iti

es

7

The Higher Abstraction Level

The process is modelled by a discrete-event queue net:

•activities are networked sets of service stations

•artifacts are circulating customers

work stationstart station

external rework station

internal rework station

review station

store station

release station

low-level design
LLD changes
LLD increments
LLD corrections reports

low-level design
LLD changes
LLD increments
(to be released)

low-level design
LLD changes
LLD increments
(to be corrected)

LLD defects reports (due to previous activities)

LLD defects reports (due to locally injected defects)

high-level design
HLD changes
HLD increments
HLD corrections reports

Modelling the
process structure

8

Higher Abstraction Level

work stationstart station

external rework station

internal rework station

review station

store station

release station

low-level design
LLD changes
LLD increments
LLD corrections reports

low-level design
LLD changes
LLD increments
(to be released)

low-level design
LLD changes
LLD increments
(to be corrected)

LLD defects reports (due to previous activities)

LLD defects reports (due to locally injected defects)

high-level design
HLD changes
HLD increments
HLD corrections reports

Low-level Design (LLD) Activity

9

Higher Abstraction Level of the Process

SP

HLD

LLD

IMP

ST

AT

requirements,
changes and
increments

AT-tested code,
changes and
increments

10

The Lower Abstraction Level

Each activity (service station) is modelled by:

•an analytical average-type function,

•or a continuos type time-varying function,

•or a combination thereof.

Modelling the
activities’ behaviours

11

Lower Abstraction Level of the “Work Station”

work station

low-level design

size: LLD_size
effort: WHLD + 0,39W
defectiveness: [DSP, DHLD, ID , 0, 0]

high-level design

size: HLD_size
effort: W HLD
defectiveness: [DSP, DHLD, 0 , 0, 0]

t i m e

st
a

ff

T

0,39W

st
af

f
 E

(t
)

2
2_2 c

b
sizeLLDaT +=

3
3_3 c

b
sizeLLDaW +=

22

2

2T

t
W=E(t) T

t

e
−

)1 + 1_1(_ c
b

sizeHLDaRandomsizeLLD =

12

Applying the Model

Two possible software development scenarios are
simulated:

• with stable set of requirements (1500 FPs)

• with a certain amount of requirements instability

The main process attributes are effort (W), delivery
time (T), productivity (P), rework percentage (RWK),
and product defect density (DFD).

13

Stable Requirements – Simulation Results

03691215081624324048566472808896weekstaff E(t) SPHLD LLDIMPSTAT projectMain AttributesSize 1165KLOC;W = 5005p-weeks;T = 785weeks;P = 5.8 LOC/p-hourRWK = 17%DFD = 0.9 defects/KLOCProject and Activities staffing profiles

14

Stable Requirements – Comparison with SEL

9.5+/- 16.5 PAverage Staff

/+/- 0.30.9

Defects/KLOC

Defect Density

/+/- 3%17 %Rework %

5.3+/- 1.85.8

LOC/p-hour

Productivity

63+/- 378 WDelivery

600+/- 60500 PWEffort

116+/- 20116 KLOCFinal Size

SELConf. 95%ModelAttribute

15

Stable Requirements – Comparison with SEL

0

3

6

9

12

15

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

week

st
af

f

0

3

6

9

12

15

0 9 18 27 36 45 54 63 72 81 90 99

week

st
af

f

activity
staff profile

project
staff profile

16

Effects of Instability on the Staffing Profile

0

3

6

9

12

15

1

15 29 43 57 71 85 99

11
3

12
7

week

st
af

f
E

(t
)

stable

unstable

Simulation Results A real project

17

Conclusions

Simulation results demonstrate the capability of the
described model of

• reproducing empirically-known facts

• being adopted as tool to test process assumptions

The suggested approach allows high model flexibility
and reusability:

• easy extension to other process paradigms and easy
hierarchical modelling of activities’s details;

• adaptable to the maturity of the target environment,
and updatable to follow its evolution (CMM, QIP).

